当前位置:首页>>高中数学>>教师中心>>同步教学资源>>课程标准实验教材>>课程标准

   2

 

    在本模块中,学生将学习立体几何初步、平面解析几何初步。

    几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证。学生还将了解一些简单几何体的表面积与体积的计算方法。

    解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。

 

    内容与要求

    1. 立体几何初步(约18课时)

    1)空间几何体

    ①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

    ②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

    ③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

    ④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

    ⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

    2)点、线、面之间的位置关系

    ①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

    ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

    ◆公理2:过不在一条直线上的三点,有且只有一个平面。

    ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

    ◆公理4:平行于同一条直线的两条直线平行。

    ◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

    ②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

    通过直观感知、操作确认,归纳出以下判定定理。

    ◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

    ◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

    ◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

    ◆一个平面过另一个平面的垂线,则两个平面垂直。

    通过直观感知、操作确认,归纳出以下性质定理,并加以证明。

    ◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

    ◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

    ◆垂直于同一个平面的两条直线平行。

    ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

    ③能运用已获得的结论证明一些空间位置关系的简单命题。

  2. 平面解析几何初步(约18课时)

    1)直线与方程

    ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

    ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

    ③能根据斜率判定两条直线平行或垂直。

    ④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

    ⑤能用解方程组的方法求两直线的交点坐标。

    ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

    2)圆与方程

    ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。

    ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。

    ③能用直线和圆的方程解决一些简单的问题。

    3)在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。

    4)空间直角坐标系

    ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。

    ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

 

    说明与建议

    1. 立体几何初步的教学重点是帮助学生逐步形成空间想像能力。本部分内容的设计遵循从整体到局部、具体到抽象的原则,教师应提供丰富的实物模型或利用计算机软件呈现的空间几何体,帮助学生认识空间几何体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,巩固和提高义务教育阶段有关三视图的学习和理解,帮助学生运用平行投影与中心投影,进一步掌握在平面上表示空间图形的方法和技能(参见例1)。

    2. 几何教学应注意引导学生通过对实际模型的认识,学会将自然语言转化为图形语言和符号语言。教师可以使用具体的长方体的点、线、面关系作为载体,使学生在直观感知的基础上,认识空间中一般的点、线、面之间的位置关系;通过对图形的观察、实验和说理,使学生进一步了解平行、垂直关系的基本性质以及判定方法,学会准确地使用数学语言表述几何对象的位置关系,并能解决一些简单的推理论证及应用问题(参见例2)。

  3. 立体几何初步的教学中,要求对有关线面平行、垂直关系的性质定理进行证明;对相应的判定定理只要求直观感知、操作确认,在选修系列2中将用向量方法加以论证。

  4. 有条件的学校应在教学过程中恰当地使用现代信息技术展示空间图形,为理解和掌握图形几何性质(包括证明)的教学提供形象的支持,提高学生的几何直观能力。教师可以指导和帮助学生运用立体几何知识选择课题,进行探究。

  5. 在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。

 

    参考案例

    1. 如图,这是一个奖杯的三视图,请你画出它的直观图,并求出这个奖杯的体积。

 

    2. 观察自己的教室,说出观察到的点、线、面之间的位置关系,并说明理由。

    
【上一篇】
【下一篇】