当前位置:首页>>高中数学>>教师中心>>同步教学资源>>课程标准实验教材>>课程标准

    1

 

    在本模块中,学生将学习集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数)。

    集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言。使用集合语言,可以简洁、准确地表达数学的一些内容。高中数学课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力。

    函数是描述客观世界变化规律的重要数学模型。高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学课程的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。学生还将学习利用函数的性质求方程的近似解,体会函数与方程的有机联系。

 

    内容与要求

    1. 集合(约4课时)

    1)集合的含义与表示

    ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。

    ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

    2)集合间的基本关系

    ①理解集合之间包含与相等的含义,能识别给定集合的子集。

    ②在具体情境中,了解全集与空集的含义。

    3)集合的基本运算

    ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

    ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

    ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

    2. 函数概念与基本初等函数I(约32课时)

    1)函数

    ①通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

    ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

    ③通过具体实例,了解简单的分段函数,并能简单应用。

    ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

    ⑤学会运用函数图象理解和研究函数的性质(参见例1)。

    2)指数函数

    ①通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。

    ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

    ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

    ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。

    3)对数函数

    ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用。

    ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。

    ③知道指数函数与对数函数互为反函数(a0a1)。

    4)幂函数

    通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

    5)函数与方程

    ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

    ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

    6)函数模型及其应用

    ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

    ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

    7)实习作业

    根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。具体要求参见数学文化的要求(参见第104页)。

    说明与建议

    1. 集合是一个不加定义的概念,教学中应结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生理解集合的含义。学习集合语言最好的方法是使用,在教学中要创设使学生运用集合语言进行表达和交流的情境和机会,以便学生在实际使用中逐渐熟悉自然语言、集合语言、图形语言各自的特点,进行相互转换并掌握集合语言。在关于集合之间的关系和运算的教学中,使用Venn图是重要的,有助于学生学习、掌握、运用集合语言和其他数学语言。

    2. 函数概念的教学要从实际背景和定义两个方面帮助学生理解函数的本质。函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体实例,体会数集之间的一种特殊的对应关系,即函数。考虑到多数高中学生的认知特点,为了有助于他们对函数概念本质的理解,建议采用后一种方式,从学生已掌握的具体函数和函数的描述性定义入手,引导学生联系自己的生活经历和实际问题,尝试列举各种各样的函数,构建函数的一般概念。再通过对指数函数、对数函数等具体函数的研究,加深学生对函数概念的理解。像函数这样的核心概念需要多次接触、反复体会、螺旋上升,逐步加深理解,才能真正掌握,灵活应用。

    3. 在教学中,应强调对函数概念本质的理解,避免在求函数定义域、值域及讨论函数性质时出现过于繁琐的技巧训练,避免人为地编制一些求定义域和值域的偏题。

    4. 指数幂的教学,应在回顾整数指数幂的概念及其运算性质的基础上,结合具体实例,引入有理指数幂及其运算性质,以及实数指数幕的意义及其运算性质,进一步体会“用有理数逼近无理数”的思想,并且可以让学生利用计算器或计算机进行实际操作,感受“逼近”过程。

    5. 反函数的处理,只要求以具体函数为例进行解释和直观理解,例如,可通过比较同底的指数函数和对数函数,说明指数函数和对数函数互为反函数(a0a1)。不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数。

    6. 在函数应用的教学中,教师要引导学生不断地体验函数是描述客观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用。

  7. 应注意鼓励学生运用现代教育技术学习、探索和解决问题。例如,利用计算器、计算机画出指数函数、对数函数等的图象,探索、比较它们的变化规律,研究函数的性质,求方程的近似解等。

 

    参考案例

    1. 田径队的小刚同学,在教练指导下进行3000米跑的训练,训练计划要求是:

    1)起跑后,匀加速,10秒后达到每秒5米的速度,然后匀速跑到2分;

    2)开始均匀减速,到5分时已减到每秒4米,再保持匀速跑4分时间;

    3)在1分之内,逐渐加速达到每秒5米的速度,保持匀速往下跑;

    4)最后200米,均匀加速冲刺,使撞线时的速度达到每秒8米。

    请按照上面的要求,解决下面的问题。

    1)画出小刚跑步的时间与速度的函数图象。

    2)写出小刚进行长跑训练时,跑步速度关于时间的函数。

    3)按照上边的要求,计算跑完3000米的所用时间。

    解:(1

    2

   

    3)略。

 

    2. 家用电器(如冰箱等)使用的氟化物的释放破坏了大气上层的臭氧层。臭氧含量Q呈指数函数型变化,满足关系式,其中是臭氧的初始量。

    1)随时间的增加,臭氧的含量是增加还是减少?

    2)多少年以后将会有一半的臭氧消失?

    
【上一篇】
【下一篇】